skip to main content


Search for: All records

Creators/Authors contains: "Ward, Eric J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought‐induced saltwater intrusion on CH4and N2O emissions remain unclear. In this study, a process‐driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification‐DeComposition (TFW‐DNDC), was applied to examine the responses of CH4and N2O emissions to episodic drought‐induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4and N2O emission responsiveness to coastal droughts and drought‐induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4and N2O emissions and suggests that simple linkages to salinity may not always be relevant, as non‐linear relationships dominated our simulations. Along the Savannah River, N2O emissions in the moderate‐oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4emission decreased. For the Waccamaw River, emissions of both CH4and N2O in the moderate‐oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate‐oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4and N2O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought‐induced seawater intrusion.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Fish in all the world's oceans exhibit variable body size and growth over time, with some populations exhibiting long-term declines in size. These patterns can be caused by a range of biotic, abiotic, and anthropogenic factors and impact the productivity of harvested populations. Within a given species, individuals often exhibit a range of life history strategies that may cause some groups to be buffered against change. One of the most studied declines in size-at-age has been in populations of salmon; Chinook salmon in the Northeast Pacific Ocean are the largest-bodied salmon species and have experienced long-term declines in size. Using long-term monitoring data, we develop novel size and growth models to link observed changes in Chinook size to life history traits and environmental variability. Our results identify three distinct trends in size across the 48 stocks in our study. Differences among populations are correlated with ocean distribution, migration timing, and freshwater residence. We provide evidence that trends are driven by interannual variation in certain oceanographic processes and competition with pink salmon.

     
    more » « less
  3. This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model. 
    more » « less
  4. Abstract

    Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.

     
    more » « less
  5. null (Ed.)
  6. Abstract Drought frequency and intensity are projected to increase throughout the southeastern USA, the natural range of loblolly pine (Pinus taeda L.), and are expected to have major ecological and economic implications. We analyzed the carbon and oxygen isotopic compositions in tree ring cellulose of loblolly pine in a factorial drought (~30% throughfall reduction) and fertilization experiment, supplemented with trunk sap flow, allometry and microclimate data. We then simulated leaf temperature and applied a multi-dimensional sensitivity analysis to interpret the changes in the oxygen isotope data. This analysis found that the observed changes in tree ring cellulose could only be accounted for by inferring a change in the isotopic composition of the source water, indicating that the drought treatment increased the uptake of stored moisture from earlier precipitation events. The drought treatment also increased intrinsic water-use efficiency, but had no effect on growth, indicating that photosynthesis remained relatively unaffected despite 19% decrease in canopy conductance. In contrast, fertilization increased growth, but had no effect on the isotopic composition of tree ring cellulose, indicating that the fertilizer gains in biomass were attributable to greater leaf area and not to changes in leaf-level gas exchange. The multi-dimensional sensitivity analysis explored model behavior under different scenarios, highlighting the importance of explicit consideration of leaf temperature in the oxygen isotope discrimination (Δ18Oc) simulation and is expected to expand the inference space of the Δ18Oc models for plant ecophysiological studies. 
    more » « less
  7. Abstract

    Pacific salmon (Oncorhynchusspp.) are exposed to increased environmental change and multiple human stressors. To anticipate future impacts of global change and to improve sustainable resource management, it is critical to understand how wild salmon populations respond to stressors associated with human‐caused changes such as climate warming and ocean acidification, as well as competition in the ocean, which is intensified by the large‐scale production and release of hatchery reared salmon. Pink salmon (O.gorbuscha) are a keystone species in the North Pacific Ocean and support highly valuable commercial fisheries. We investigated the joint effects of changes in ocean conditions and salmon abundances on the productivity of wild pink salmon. Our analysis focused on Prince William Sound in Alaska, because the region accounts for ~50% of the global production of hatchery pink salmon with local hatcheries releasing 600–700 million pink salmon fry annually. Using 60 years of data on wild pink salmon abundances, hatchery releases, and ecological conditions in the ocean, we find evidence that hatchery pink salmon releases negatively affect wild pink salmon productivity, likely through competition between wild and hatchery juveniles in nearshore marine habitats. We find no evidence for effects of ocean acidification on pink salmon productivity. However, a change in the leading mode of North Pacific climate in 1988–1989 weakened the temperature–productivity relationship and altered the strength of intraspecific density dependence. Therefore, our results suggest non‐stationary (i.e., time varying) and interactive effects of ocean climate and competition on pink salmon productivity. Our findings further highlight the need for salmon management to consider potential adverse effects of large‐scale hatchery production within the context of ocean change.

     
    more » « less
  8. null (Ed.)